EE 505
Lecture 9

« Statistical Circuit Modeling



Review from previous lecture:

Statistical Analysis Strategy

Will first focus on statistical characterization of
resistors, then extend to capacitors and transistors

Every resistor R can be expressed as

R=R\+Rgp+Rrw+Rrp+RreraptRre

where R is the nominal value of the resistor and the remaining terms are
all random variables

Rrp: Random process variations Rrerap: Random gradient variations
Rrw: Random wafer variations Ry, Local Random Variations
Rrp: Random die variations



Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials

Generally h is very small compared to L and W

Films are often characterized by Sheet Resistance

In the ideal case R:p(E o Lj = R, (Lj



Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials

A2

Film Characterized by Resistivity : p(x,y,z)

Films are often characterized by Sheet Resistance Ry (x,y):

Ideally p(x,y,z) is independent of position as is R_(X,Y)

In the ideal case R= (E.Lj - R (Lj
Pl w “\W



Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials

Ideally 1 A




Resistor Characterization
|deally A Ay Actually
+

Y x

« Boundary of resistor varies with position

* p(x,y,z) varies with position

« Thickness (H(x,y)) varies with position

» Properties of resistor vary with position and temperature



Resistor Characterization
‘B
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Boundary of resistor varies
p(X,y,z) varies with position

These variations will define R



Consider the following resistor circuits

IA
—_— R=R,*+Ry
—> R Statistical
Model
l mean He, =0
B standard deviation on
Distribution: Truncated Gaussian
- - - N~(0O,o
Series Resistor Connection (of two nominally identical devices) ( RR)
A I:21:|:2N+FQR1
IQZZIQN-HQRZ
R1
RSerZ:ZRN+RR1+RR2
R

Compare the standard deviation of the resistance of
the series combination with that of a single resistor

o8



Consider the following well-known Theorem:

Theorem: If X;, ... X, are uncorrelated random variables and a,, .. a, are
real numbers, then the random variable Y defined by

n
Y=)> aiXi
=1
has mean and variance given by
n
Hy =2 a
=1
L 2
ovy=|2 (aoj)
=1

where p, and o;are the mean and variance of X; for i=1,...n.



Series Resistor Connection

(of nominally identical devices)

RlzRN +RR1
RZ:RN+RR2 IQSerZ:2|?N+I?Rl+I?RZ
From Theorem GSerZZ\EJRR

N ~ (O, \/EGR )
R
Extending to n-resistors that are nominally identical
RSern:nRN-l-ZRRk
k=1
O-Sern :%O-RR

N ~ (O, %GRR )

>

o

W —AWN— NNV >

R:

R2

Rn



Summary of Results

Nominal Standard Normalized
Structure Resistance Deviation Standard
Deviation
R Ry Ok,
Ser nR nR, \ﬁO-RR

Note increasing the resistance by a factor of n increased the standard
deviation by /n



Normalized Statistical Characterization

=7
Gi !
RN
From previous theorem:
For single resistor R
1
2 —_ 1 2 — GR - GR
= RZ2 TR Ry N
Ry N

Reo =NRy + ) Ry
k=1
R NMRy+> Ry LoR
R =—EQ — k=1 =1+2) Rk
MM nR, nR, n& R,

Pz
2|

nRy

Note increasing the resistance by a factor of n dropped the normalized
standard deviation by «n



Summary of Results

Nominal Standard Normalized
Structure Resistance Deviation Standard
Deviation
R Ry Or~OR, Ore
RN
Jn =
Ser nR NRy Noy I Ore

Note increasing the resistance by a factor of n (identical in both value and structure)
increased the standard deviation by /n

Note increasing the resistance by a factor of n decreased the
normalized standard deviation by /n



Parallel Resistor Connection

R,=R\*+Rg,; (RN+RR )(RN+RR )
R — R1 R2
R,=R+R_, Par 2R +R, +R_

R
— Rﬁ +RN (RRRl + RRRZ ) + RRRIRRRZ 1
Par2 ™
2RN+RRR1+RRR2

1+ RRRl + RRRZ

R

~ Rij RN B

RPar2 = R R +R

N 1+ RRl RRZ

2R,

2R,

« The random variable Ry, is highly nonlinear in Rg, and Ry,
« Some very good approximations of R, can be made that linearize the
expression



Parallel Resistor Connection

A
R1:RN+RR1 R 1+ RRR1R+ RRRz
R,=R,+R R, , =N N
2 N R2 Par 2 2 N RRR1+RRR2 Rl R2
2R,
Recall that for x small, 1o
1+x
Thus B
R +R R +R
RParz ~ RN l+ RRr1 Rr2 1_ RRr1 Rr2 ~ RN +1R 1
2 ) 2R, 2 4 R 4 PRw

From Theorem (identical in both value and structure)
2 1 2 1 2 o 1 2

ORew: =16 R T 16 R - g R

For n in parallel (dentical in both value and structure), it follows that

1

Parn T n ?/2

R




Parallel Resistor Connection

A
Consider normalized variance
R — RN Rl Rz
Par-2 2
RPar2 l R R1 1 R
—Par2  ~14
R 2 R, 2 R B

Par 2—Norm

From Theorem

o ~ 1 2 +1 02 = E 02
R’?% 4 RRRl 4 % 2 E
Par 2—-Norm RN RN RN
O =
RPar2 /
RPar2 Norm
_ R
And for n in parallel (identical in both value and structure) RPar—n ="
1 n
O Ren = [ ORe
RParn—Norm RN

Note decreasing the resistance by a factor of n dropped the standard
deviation by /n



Summary of Results

(for ideally identical in both value and structure)

Nominal Standard Normalized
Structure Resistance Deviation Standard
Deviation
R Ry Or~OR, Ore
RN
Jn =
Ser nR NRy Noy N
Par nR & 1 1
n 3 O Jn &

Note increasing or decreasing the resistance by a factor of n decreased
the normalized standard deviation by \/n

Note increasing the area by a factor of n decreased the normalized
standard deviation by\ﬁ

What is the relationship between resistance, area, and standard deviation?



Consider parallel/series combination of 4 nominally identical resistors

(identical in both value and structure)

REQ — RN
O

o, =—12
EQ 2
B 1

Note making no change in the resistance reduced the standard

deviation by 2

Note increasing the area by a factor of 4 dropped the standard

deviation by 2



Summary of Results

Nominal Standard Normalized
Structure Resistance Deviation Standard
Deviation
R Ry ORr, Ory
RN
Jn o
Ser nR NRy Noy N
RN 1 1
- — —=0
Par nR o n% Ok, N %
Ser 2R ZRRN \EGRR R G
Par 2R A C’FV ‘7/
2 J8 /5
Or,
Ser 4R 4R, ZO'RR 3

/2
N GRR %:
Par 4R y 4 ) Z
Par/Ser 4R Ry GR% R/



Observation:

* In all cases, increasing the area by a factor of n decreases
the normalized standard deviation by sqrt (n)

* These structures were all configured to have the same nominal

current density. Without the equal current density requirement,
results would differ

Example: Same nominal resistance but different current density and different variances

2RN \ 2Ry



Have considered in previous examples the following scenarios

o

» Current density is uniform in each structure

» Aspect ratio plays no role in normalized performance

» Resistance value plays no role in normalized performance
» Only factor in normalized performance is area

» For a given resistance, each factor of 2 reduction in o requires a
factor of 4 increase in area



Key Implications:

If yield of a data converter is determined by matching
performance, then every bit increment in performance
will require at least a factor of 2 reduction in o and
correspondingly a factor of 4 increase in the area for
the matching critical components if the same yield is

to be obtained.




Formalize Resistor Characterization Concepts

Assume lithography is perfect, no gradient effects, and no contact resistance

y

W
 (x,y)
L1 L)
> X
R.(X,Y): Sheet resistance at (x.y)
'[RD (x,y)dxdy
Most authors assume: _
Rueo =2— A=WL

We will make this same “standard” assumption



Counter example showing limitations of standard assumption

Assume sheet resistance constant in yellow region of value R_; and constant in
purple region of value R_, ®

<T> E <T>
L '
Ro1 T Roa

L
If € is small and Wy large  Rgg =Ry RAB = le(w)
R (X,y)dxdy
but R = i‘ *0Y) ~ Ro1*Rpp
°EQ model A B 2

If R,; and R, are not equal, then R % R.;

Though errors can be big, in practical processes for structures with identical current density
throughout, the assumptions are probably pretty good !



Consider a square reference resistor of width 1um

Define REF to be the resistance of the reference resistor. B,
Since it is square of area 1u?, the equivalent sheet |

resistance of the reference resistor is equal to REF 1 |

Assume the standard deviation of this reference resistor,
due to local random variations, iS Ogge

Consider now a resistor of length L and width W

Define the equivalent sheet resistance of this resistor: R g4 L

R_eq is @ random variable with a nominal value of R W
and standard deviation that satisfies the expression

A
A 4

2 2
o2 = Orer _ ORrer lB
RDEQ o o 2
W el A
It follows that the value of the resistor R is given by the expression

L
R=R Y
“EQ W

Thus L)’ 2 2
gé = (Wj oaé gé :(Lj ° Orer = JéEF ° L

WeL



Consider a resistor of width W and length L B

2 2
L o L A=W-L L
ot =( ) s = ot o
| . | R LW
Consider now the normalized resistance —
RN ) '
where R, =R L l B
N DN W 2

It follows that

ot = () ot g )~ () e )~ ()

The term on the right in [ ] is the ratio of two process parameters so define

the process parameter A, by the expression A = ORreE
R

oN

A is more convenient to use than both o and R_

Thus the normalized resistance is given by the expression
2 2
2 AR _ AR
oRr = =
2wl A
N
Will term AR the “Pelgrom parameter” (though Pelgrom only presented results for MOS devices)




How can Ay be obtained?

B
181
_ A o
Recall: 6%_ﬁ where AR :%T TR
B,

1. Obtain Ai from a PDK

2. Build a test structure to obtain Ay

Recall:
Let x be a random variable with mean p and standard deviation o and let

X = {x. F be n samples of the random variable x. Define g to be the mean of
the sample and O, to be the standard deviation of the sample. Then the statistic
K IS an unbiased estimator of p and the StatIStIC,/n—_las IS an unbiased estimator
of o

The mean and variance of a large sample of a random variable are unbiased
estimators of the mean and variance of the random variable itself



Strategy 1 A, =2

oN

1. Create a test circuit with a large number, n, of 1 x 1 resistors

2. Measure R,,...R,
3. Calculate the sample standard deviation and sample mean as estimators

Orer = OsampLE ,&R ~ OsampLE.
5 iy’
—_ SAMPLE
RDN = HsampLE
Is this a good strategy for obtaining Ag?
NO ! T A 1p 4

» Fringe effects will increase variance
« Gradient effects will skew the results g

* Die-level and wafer-level variations will skew the results
« Contact resistances will skew results




AR _ OReF A
Strategy 2 R, "
Create n Iarge area test structures - d
~ wW
R\ = TIUSAMPLE L
Large Area
(72 = (72 ® L
R~ “YREF \J
W 3 f
e B

GREF = O-R_sample L

HsampLe IS the mean resistance of the sample and Og_sampe IS
the standard deviation of the sample

AR _ 5REF _ GR_SAMPLE v LW

RDN luSAMPLE

Is this a good strategy for obtaining Ag?

« Significantly reduces the boundary and contact resistance
associated with the 1p x 1 structure

» If devices are not really close, other random variations will skew
results that are supposed to characterize local random variations



Gradient Effects

Consider
G»r'a CI ft’n‘:l‘
\D;_ rectiOm
R Ra
ORer
P\l Q“("

aradie.n.-l;- et Sects will drnma{.‘mltj
skew A? ettraction |

— heed Earqe test structures
+hat are \nsensitive +o
gradient effects !

- Consider a Awo-resisto
“‘est cetl



How does the vatio maJcck'mrj

ot +i"_.0 resistore relate to

‘H‘.e S'&‘andarc!. dEufa.lcn:E}ﬂ oF a
single resistor ?

R —» ‘jﬁ or Ua

Rw
e = Rl*Rg_
R._ 'R:_ ‘RN
Rlu *Elg‘ﬂ HR;
?m"RZM:‘RN RM - _E
e = Riﬂ“‘ﬁag‘
QN‘




Strategy 3 Measurement of Ag

o, =20,
N

Ry R

ARzﬁoaR
Ru

« Create 2 resistors, R; and R,, using
common centroid layouts

Ria Roa
EOmm‘.’;‘ Ri=RiA//Rig  Ry=R,\/IR,g
entroi
_I_ / A=area of one resistor
Define rv ARy
IQN

Create a large number of these test
structures and distribute across a die or

wafer. Sample standard deviation is

O
é—R SAMPLE

N
« calculate variance of these samples

~ 1
Ar = \/K *9r SAMPLE \/K ° ﬁ @ ar SAMPLE
Ry Ry



Strategy 3 Measurement of Ag

Large number of test structures across die, wafer,
wafers, or process runs

R ® AR fox fis fos
2 —— SAMPLE +
Ry + +

. ﬂ
" +

+ +

.
+
+
" v
+

Will gradients skew the normalization by R?

No, effects will be minor

Assumption is made that Ay is not dependent upon gradients or even run-
to-run variations

Designs must be robust to mismatch effects anyway so even small errors in Ag
should not compromise design



Strategy 3 Measurement of Ag

Large number of test structures across die, wafer,
wafers, or process runs

= \/ ® ——
AR A O AR Rox Ran Ria Roa
2 —— SAMPLE +
Ry + +
ﬂ ﬂ
" +
+ +
28
+
+
+

Is this a good strategy for obtaining Ag?



Strategy 4 Measurement of Ag

What about just taking a large number
of resistors at multiple sites on a die, at
multiple die locations on a wafer, and
and on many wafers an wafer lots:

—

Or =04
— SAMPLE
N |?N

S— /&R =+vAo,
A, - SAMPLE
N

Op =——F—

—

Is this a good strategy for obtaining A;?

No! Highly dependent upon process variations, wafer variations, and gradients



Strategy 6

What about having arrays of common

Measurement of Ay

centroid test structures and taking pair-
wise differences?

Common

e ———  Centroid

R7A R5A R6A R8A
Ria Raa R3a R1a Raa Raa
Common
Centroid
+—
R4B RZB RlB R3B
RZB RlB
Rss Res Rss R7s

Is this a good strategy for obtaining A;?

Yes! Get more useful information per unit area than with single pair structures



Measurement of Ay

R7A RSA RSA RSA

R3a Ria Raa Raa

Common
+ Centroid

Regardless of which approach is followed, may need to have dummy
devices that are nominally the same as the test devices surround test array

Sometimes two (or more) rings of dummy devices are used



Ratio Matching Effects in Data Converters

« Ratio matching is often critical in ADCs and DACs

» Accuracy and matching of gains is also critical in some data
converters



E*&Gmple . If o ratio of 10|
1S des'freé:’ determine +the ratig
'maiccl«:‘nﬂ accurocy relative 4o 'Hle
Skoandard deutation 08 o E}nﬂ\e

Yesickor

Const :;Lpr

Ve ID‘{—HAW———
L. Vo

assume reallaed as
IOR rf- Seeles Conngetipn of

U R 1O resistors

L « Vo
Q uestlon © hat is the “‘*ﬂftl&” of these

two Qmﬁ‘\x‘“”ﬁ and how do 'H\Q3 COmpar®
K‘Q O r_‘s‘iuen ga:n G.t:(ura.fﬂ ?eq__uhewmlr {_%

Sptciqzsd ?



Amplifier Gain Accuracy

Vv N R
N —AN\N—  Vour A, =- 2

Does the ratio matching accuracy (A) depend upon the magnitude of the gain:

Consider: Ry Ry, Ry

Assume ideally R,,=R,,=...=R,,=R;; and the areas of the resistors are also
ideally the same. Define A to be the nominal gain.

ACLO — RZNOM — k

R1NOM

Define 6 to be the gain error



Amplifier Yield

Assume the closed-loop gain A, is a Gaussian RV with mean A, , and standard
deviation o, Where Ag , is the nominal gain.

Assume vyield is defined by amplifiers with a gain that satisfies the expression

Aco(1-64) <Ag <A, (1+6y)

Y = P{ACLO (1_ ex) < ACL < ACLO (1+ Gx )}

X=Ac_ o (1+6x)

Y = _[ face (X)dX

X=Aco(1-6x)

Z:ACL0(1+9x)—ACLo

Y = j fuon (2)dz

;- AcLo(1-0x)-Acio
SacL

A
Zzex CLO

Y = j fuon (2)dz

-0y A
2—_"x"cLo
SacL



Amplifier Yield

Assume the closed-loop gain A, is a Gaussian RV with mean A, and standard
deviation g, where A, Is the nominal gain

Assume yield is defined by amplifiers with a gain that satisfies the expression
Aco(1-6,) <A <Ag,(1+6y)

A
Zzex CLO

Y = j fuon (2)dz

-0y A
2—_"x"cLo
SacL

Y = 2F [—OXACLO ) -1

— “N0.y)
ACL

Y = 2FN(O.1) Gex -1
ACL
ACLO

Thus to obtain yield need to obtain o, or O acL
ACLO



Amplifier Gain Accuracy
Gainerror 0=A A

cLo "cL

It follows that Oy = Ot

Thus need to obtain G

0= - R +SR
R, NOM R, ACT 9k 0 +iZ:1: Rai
k K
2Ry RO[1+RRHJ
O=k—it R,
1 k_l_iRRZl
f—k———1
R2i — Ro + RRZi [1+Rn
0

R11 = I:Qo T RRl

Ry
Vin —\W\—

— VOUT



Amplifier Gain Accuracy

R0
. AL A
Recall: R5 WL A

L VOUT

tk=l 0, =0y N2

fk=10 Oy =03 v101=10.50

Ry Ro

<
|

0, A
— 2FN(0_1) [ X" "CLO ] _ 1

ACL



Amplifier Gain Accuracy

16R AR
Y ; lw R VW le\?»
N —" VW - Vout Vin —\W, = R
j'* j+ VWY - | Vour
N
Option 1 Option 2

Which will have the lowest o?

17R for Option 1

Note: Rior=

10R for Option 2



Amplifier Gain Accuracy

Many different ways to achieve a given gain with a given resistor area

R
Vin —AM w"w
+

Which will have the best yield?
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Stay Safe and Stay Healthy !







